

Upper Broad Run Watershed Management Plan

Watershed Partnership Workgroup Meeting #4

Nancy Roth, M.S., PMP Alexi Boado, M.S., M.P.A.

June 5, 2014 – Brambleton community building, Palladian Blue Terrace

Agenda

- 1. Welcome and introductions
- 2. Overview of watershed plan development process
- 3. Updates to watershed recommendations
 - Stormwater pond conversions and other upgrades
 - Stream restoration
 - Community-based actions
- 4. Updates to pollutant load and load reduction estimates
 - Reflect updated recommendations
 - Future land use
- 5. Planning for community outreach meeting (week of June 23)
- 6. Other work in progress

VERSAR

- Draft watershed plan
- Presentation to WRTAC June 23
- 7. Beyond the watershed plan implementation

Overview of Watershed Plan Steps

• Public Involvement

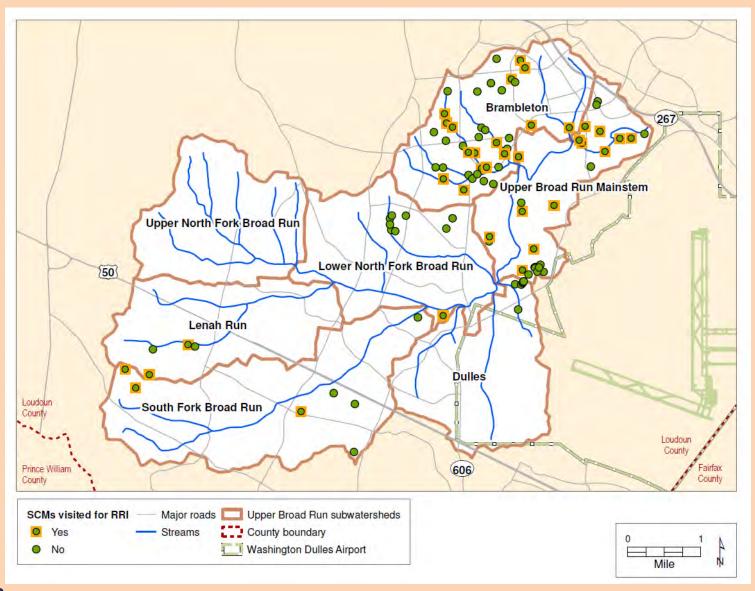
- Community meeting (September 2013), 1 more planned (June 2014)
- Watershed Partnership Workgroup meetings, 3 to date (Oct. 2013, Jan. 2014, April 2014), 1 today (June 2014)
- WRTAC presentation (Feb. 24, 2014) + 1 more planned (June 23, 2014)
- Development of vision, goals, and objectives
- GIS investigations
- Field investigations
- Development of proposed watershed management actions and strategies
- Modeling pollutant loads and expected load reductions
- Interim report draft (reviewed by WPW), now final
- Refine proposed actions and strategies
- Model future land use and pollutant loads
- Watershed plan report (draft review by WPW)

Updates to Watershed Recommendations

- Stormwater pond conversions and other stormwater management upgrades
- Stream restoration
- Community-based actions

Stormwater pond conversation and other stormwater management upgrades

- Seeking opportunities to enhance water quality treatment in existing stormwater infrastructure
- Current database of BMPs (94) reviewed to select best candidates for field investigation
 - Reviewed database and other information to confirm pond subtype (e.g., Dry Pond v. Dry Ponds with Extended Detention)
- 28 small and/or "manufactured" BMPs
 - Small drainage = not cost effective to update
- 66 "ponds"
 - Large drainage areas = cost effective to update



66 "Ponds"

- Types
 - 19 wet ponds
 - 46 "dry" ponds
 - 1 wetland
- Ownership
 - 35 County-owned
 - 28 privately-owned
 - 3 school-owned
- Screening for field visit
 - Type of pond (efficiency), date of construction, aerial pictometry, conversations with County staff
 - = 35 "ponds" field visited of 66
 - Budget limited

Retrofit Reconnaissance of Existing Stormwater Ponds

VERSAR

Results of Field Investigations

35 ponds visited

• Access to 14 engineering plans available for verification of pond type changed the calculus

We now know or speculate:

- 5 dry ponds (volume-control only)
- 24 extended detention dry ponds (WQ and volume)
- 2 *enhanced* extended detention dry ponds (have a marsh included)
- 1 extended detention wet pond
- 3 wet ponds

Recommended Stormwater Pond Conversion and Other Upgrades

- Field Time + Plan Review Yielded:
 - 5 (high priority)
 - 11 (medium and medium/high) possible pond conversions
 - 17 low
 - 2 not upgradeable / state-of-the-art
- 7 retrofits within pond boundaries or nearby
- Poor soils (slow percolation) and flat topography made conversion to wet pond or wetlands most common recommendation (27)

Example: Recommended Stormwater Pond Conversion – High Priority

Structure ID: Subwatershed: Project Name: Nearest Address: AJ2430 Upper Broad Run Mainstem Mercure Circle Dry Pond Conversion Mercure Circle Project Type:FRestoration Priority:FDrainage Area:1

Pond Conversion High 15.57 acres

Proposed Action:CBenefits:IrKey Issues for Implementation:EPlanning Level Cost Estimate:T

Convert existing dry pond to a wet pond or wetland facility Improve stormwater quality controls, business outreach, improve aesthetics Engage nearby businesses and promote benefits of pond prior to conversion TBD

Example: Recommended Stormwater Conveyance Conversion – High Priority

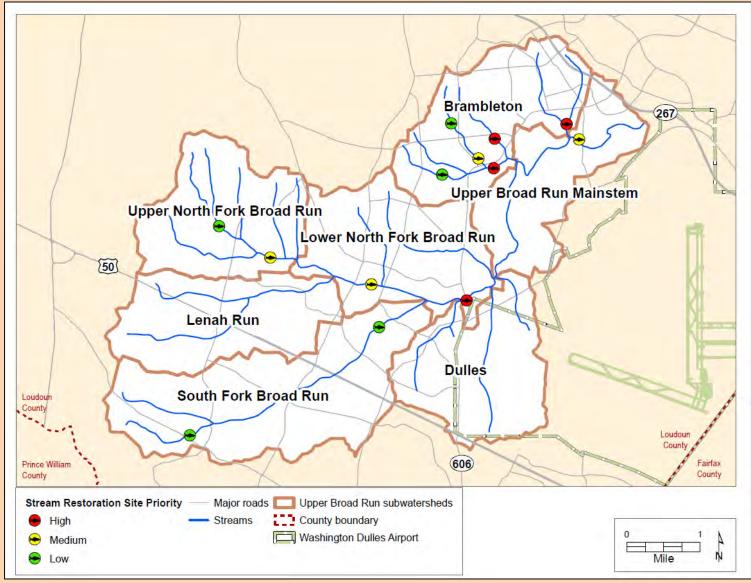
Structure ID: Subwatershed: Project Name: Nearest Address:

JC4162 Brambleton Gleedsville Manor Bioswale Gleedsville Manor Drive Project Type:ConvRestoration Priority:HighDrainage Area:7.78

Conversion to Bioswale High 7.78 acres

Proposed Action:CBenefits:IrKey Issues for Implementation:EPlanning Level Cost Estimate:T

Convert concrete channel stormwater conveyance to a bioswale Improve stormwater quality controls, public education, improve aesthetics Engage residents, promote bioswale benefits; no apparent utility conflicts TBD


Stream Restoration

Site Selection Criteria:

- Stream Corridor Assessments (SCA)
 - Erosion Severity = Very Severe, Severe, or Moderate AND...
 - Correctability = Best, Good, or Moderate
 - Retrofit Reconnaissance Investigations (RRI)
 - Downstream condition of channel matches SCA erosion criteria OR...
 - Taking pond off-line will improve stream condition and restore natural hydrology

Stream Restoration Site Locations

VERSAR

Stream Restoration Sites – High Priority

		Length of	Height of		Proposed		Sequencing	Known Utilities and
Station ID	Subwatershed	erosion (ft)	erosion (ft)	Site Description	Action	Benefits	concerns	Other Constaints
				Severe erosion of right bank			Need to	
				occurring where Loudoun			consider	
				County Parkway is proposed to			potential	
				cross Broad Run. Large debris		Improve stream stability,	restoration in	
				jam downstream is the cause of		erosion, and instream	conjunction	Beside Transmission line
				the erosion. Transmission line	Stabilize stream	habitat; Prevent property	with road	ROW and planned road
LNF-ES-077-2014	Lower North Fork	35	6	ROW on other side of stream.	bank	and structural loss.	construction.	crossing
				Within highly impervious		Improve stream stability,	Prior to	
				catchment. Several trees close		erosion, and instream	undertaking	
				to falling in stream. Close to end		habitat; Improve		No apparent utility
				of Addlestone Pl. Within thin		floodplain connectivity	design, must	conflicts; however, the
				wooded area with residential		and nutrient cycling		presence or absence of
						functions; Prevent	flow issues from	utilities should be
				Loudoun County Parkway to the		property and structural	upstream	confirmed prior to
BRAM-ES-059-2014	Brambleton	90			floodplain	loss.	development.	restoration
						Improve stream stability,	· ·	
					Take pond off-	erosion, and instream		
					line, remove	habitat; Improve	Prior to	
					geese, convert	floodplain connectivity	undertaking	
				Pond within Lyndora Park. Focus	upstream	and nutrient cycling	restoration	Sewer line ROW and
				is on the inline pond, channels	channels to	functions; Prevent	design, must	footpath in close
				leading to the pond, and	bioswales, and	property and structural	first manage	proximity to candidate
				outflow channel. Stream	stabilize	loss; Improve community	flow issues from	project. Portions of
				downstream of pond is very	downstream	usage; Opportunity for	upstream	Lyndora Park may be
BRAM-RS-265-2014	Brambleton	2500	6	unstable.	erosion	public education.	development.	impacted.
				Stream with eroded banks		Improve stream stability,	Prior to	
				beside JC4380. Site is near		erosion, and instream	undertaking	
				Airmont Hunt Dr. and Ryan Rd.		habitat; Improve		No apparent utility
				Site is downstream of a lot of		floodplain connectivity	design, must	conflicts; however, the
				recent and ongoing		and nutrient cycling		presence or absence of
				development, including		functions; Prevent	flow issues from	utilities should be
				Moorefield Station Elementary	Stabilize stream	property and structural	upstream	confirmed prior to
BRAM-RS-263-2014	Brambleton	700	4	School.	bank	loss.	development.	restoration

Stream Restoration Sites – High Priority

			Height of		Proposed		Sequencing	
Station ID	Subwatershed	erosion (ft)		Severe erosion of right bank occurring where Loudoun County Parkway is proposed to cross Broad Run. Large debris jam downstream is the cause of the erosion. Transmission line	Stabilize stream	Improve stream stability, erosion, and instream habitat; Prevent property	conjunction	Other Constaints Beside Transmission line ROW and planned road crossing
BRAM-ES-059-2014	Brambleton	90		housing to the south and Loudoun County Parkway to the	Stabilize stream bank and reconnect with	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent property and structural loss.	undertaking restoration design, must first manage flow issues from upstream	No apparent utility conflicts; however, the presence or absence of utilities should be confirmed prior to restoration
BRAM-RS-265-2014	Brambleton	2500		Pond within Lyndora Park. Focus is on the inline pond, channels leading to the pond, and outflow channel. Stream downstream of pond is very	Take pond off- line, remove geese, convert upstream channels to bioswales, and stabilize downstream	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent	Prior to undertaking restoration design, must first manage flow issues from upstream	Sewer line ROW and footpath in close proximity to candidate
BRAM-RS-263-2014	Brambleton	700		· · · ·	Stabilize stream	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent property and structural loss.	Prior to undertaking restoration design, must first manage flow issues from upstream	No apparent utility conflicts; however, the presence or absence of utilities should be confirmed prior to restoration

Example: Stream Restoration Site – High Priority

Project ID: Subwatershed: Project Type: Nearest Address: BRAM-ES-059-2014 Brambleton Stream Restoration Addlestone Place Restoration Priority:HighErosion Length:90 feetErosion Height:2.5 feet

Proposed Action: Benefits: Key Issues for Implementation: Planning Level Cost Estimate:

Stabilize stream banks and reconnect stream with floodplain
Improve stream stability, erosion, and instream habitat, etc.
Manage upstream flows; no apparent utility conflicts, check prior to restoration
TBD

Stream Restoration Sites – Medium Priority

		Length of	Height of		Proposed		Sequencing	Known Utilities and
Station ID	Subwatershed		erosion (ft)	Site Description	Action	Benefits	concerns	Other Constaints
	Upper North Fork	25		Approximately 10 feet		Improve stream stability, erosion, and instream habitat; Prevent property and structural loss; Reduce road flooding.	None	Beside Roadway
	Lower North Fork	750		Along mainstem between Belmont Ridge Rd. and Evergreens Mill Rd. Adjacent to transmission line ROW and old crop field. Very little tree cover. Erosion is prevalent in the vicinity of this site. A lot of active bank slumping occurring, potentially contributing substantial amounts of	Stabilize stream bank and	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity	Prior to undertaking restoration design, must first manage flow issues from upstream development.	Adjacent to Transmission line ROW
				Within thin wooded corridor near Claiborne Parkway and Loudoun County Parkway. Residential yards close to eroding bank. Heavy deposition	Stabilize stream bank and reconnect with	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent property and structural	Prior to undertaking restoration design, must first manage flow issues from upstream	Residential yards 10-15 feet from left bank
BRAM-ES-060-2014	Brambleton Mainstem Upper	40		Erosion along both sides of mainstem near High Haven Terrace. Both sides of stream are forested for most of the length of erosion. This site is close to the Upper Broad Run watershed outlet, and thus is subject to the cumulative	floodplain Stabilize stream	Improve stream stability, erosion, and instream habitat; Improve	development. Prior to undertaking restoration design, must first manage flow issues from upstream	(looking downstream). Water line and Sewer line crossings occur close to this area. Multiple property owners within
MAIN-RS-264-2014	Broad Run	1000	4.5	upstream flows.	bank	loss.	development.	proposed project area.

Stream Restoration Sites – Medium Priority

		Length of	Height of		Proposed		Sequencing	Known Utilities and
Station ID	Subwatershed	erosion (ft)	erosion (ft)	Site Description	Action	Benefits	concerns	Other Constaints
UNF-ES-123-20	14 Upper North Fork	25	3	Approximately 10 feet	Stabilize stream bank	Improve stream stability, erosion, and instream habitat; Prevent property and structural loss; Reduce road flooding.	None	Beside Roadway
LNF-ES-114-20	.4 Lower North Fork	750		Along mainstem between Belmont Ridge Rd. and Evergreens Mill Rd. Adjacent to transmission line ROW and old crop field. Very little tree cover. Erosion is prevalent in the vicinity of this site. A lot of active bank slumping occurring, potentially contributing substantial amounts of sediment to stream.	bank and	erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent property and structural loss.	Prior to undertaking restoration design, must first manage flow issues from upstream development.	Adjacent to Transmission line ROW
BRAM-ES-060-20)14 Brambleton	40		Within thin wooded corridor near Claiborne Parkway and Loudoun County Parkway. Residential yards close to eroding bank. Heavy deposition on opposite bank.	bank and	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent property and structural loss.	Prior to undertaking restoration design, must first manage flow issues from upstream development.	Residential yards 10-15 feet from left bank (looking downstream).
MAIN-RS-264-20	Upper Broad Run 14 Mainstem	1000		Erosion along both sides of mainstem near High Haven Terrace. Both sides of stream are forested for most of the length of erosion. This site is close to the Upper Broad Run watershed outlet, and thus is subject to the cumulative effects of the watershed's upstream flows.	Stabilize stream bank	Improve stream stability, erosion, and instream habitat; Improve floodplain connectivity and nutrient cycling functions; Prevent property and structural loss.	Prior to undertaking restoration design, must first manage flow issues from upstream development.	Water line and Sewer line crossings occur close to this area. Multiple property owners within proposed project area.

Example: Stream Restoration Site – Medium Priority

Project ID: Subwatershed: Project Type: Nearest Address: LNF-ES-114-2014 Lower North Fork Stream Restoration Belmont Ridge Rd. and Evergreens Mill Rd.

Restoration Priority:	Medium
Erosion Length:	750 feet
Erosion Height:	4.25 feet

Proposed Action:SBenefits:IrKey Issues for Implementation:MPlanning Level Cost Estimate:T

Stabilize stream banks and reconnect stream with floodplain Improve stream stability, erosion, and instream habitat, etc. Manage upstream flows; adjacent to Transmission line ROW TBD

Other Types of Proposed Stormwater Control Measures (SCMs) – including Community-Based Actions

- Urban nutrient management (i.e., lawn care practices)
- Reforestation
 - Stream buffers
 - Upland areas

• New Stormwater Control Measures (SCMs) such as bioretention, bioswales, urban filtration practices, etc. not associated with an existing dry or wet pond

- Downspout disconnection
- Impervious cover removal

Pollution loads and load reductions

Updates to pollutant load and load reduction estimates

Table 4-21: Pollutant Removal Efficiencies of Select BMPs as Provided by VAST February 2014											
Select BMPS from VAST**	Nitrogen Effectiveness (%)	Phosphorus Effectiveness (%)	Sediment Effectiveness (%)								
Urban Nutrient Management Plan Low Risk Lawn	6	3	0								
Street Sweeping 25 times a year-acres	3	3	9								
Urban Nutrient Management Plan	9	4.5	0								
Vegetated Open Channels - C/D soils, no underdrain	10	10	50								
Urban Nutrient Management Plan High Risk Lawn	20	10	0								
Dry Detention Ponds and Hydrodynamic Structures	5	10	10								
Permeable Pavement w/o Sand, Veg C/D soils, underdrain	10	20	55								
Permeable Pavement w/ Sand, Veg C/D soils, underdrain	20	20	55								
Dry Extended Detention Ponds	20	20	60								
Wet Ponds and Wetlands	20	45	60								
Vegetated Open Channels - A/B soils, no underdrain	45	45	70								
Bioretention/raingardens - C/D soils, underdrain	25	45	55								
Urban Forest Buffers	25	50	50								
Permeable Pavement w/o Sand, Veg A/B soils, underdrain	45	50	70								
Permeable Pavement w/ Sand, Veg A/B soils, underdrain	50	50	70								
Urban Filtering Practices	40	60	80								
Bioswale	70	75	80								
Bioretention/raingardens - A/B soils, underdrain	70	75	80								
Permeable Pavement w/o Sand, Veg A/B soils, no underdrain	75	80	85								
Permeable Pavement w/ Sand, Veg A/B soils, no underdrain	80	80	85								
Urban Infiltration Practices w/o Sand, VegA/B soils, no underdrain	80	85	95								
Urban Infiltration Practices w/ Sand, Veg A/B soils, no underdrain	85	85	95								
Bioretention/raingardens - A/B soils, no underdrain	80	85	90								

Restoration Strategies

Two categories:

County-led strategies - large capital projects

Citizen-based strategies - locally based programs

Partnership between County government, other agencies, citizens, businesses, and other organizations

Participation at all levels is critical for success

Photo credit: Rain Barrels of Annapolis

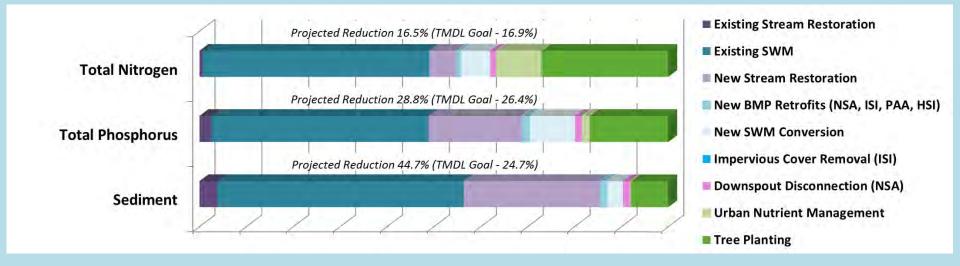
Pollutant Removal Analysis

Two Implementation Scenarios

• Maximum Potential: All available units

• Projected: with expected participation
rates

Reduction estimates based on available BMP
removal efficiencies

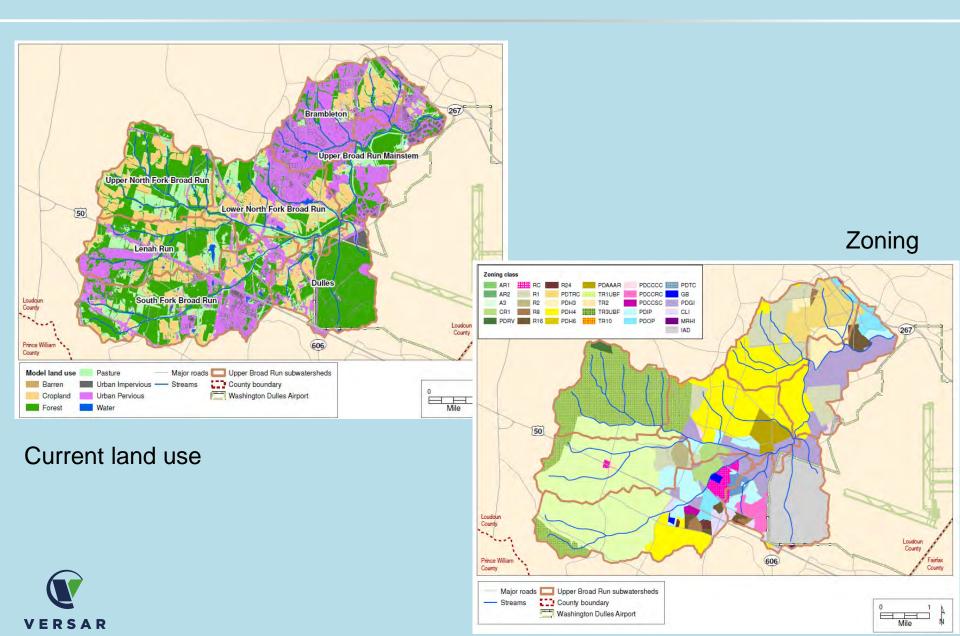

Pollutant Load Reductions

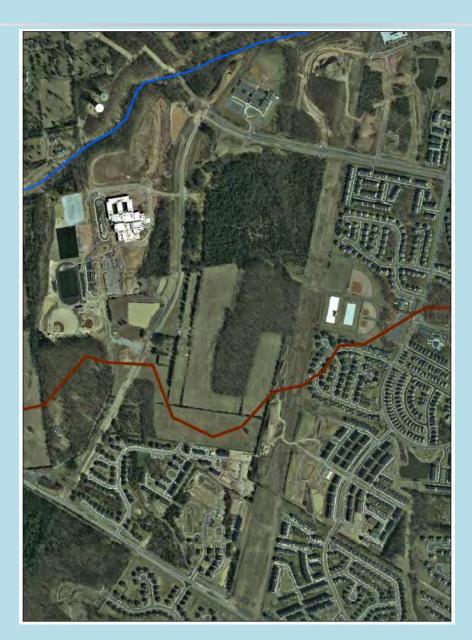
Summary of Pollutant Load Reduction Estimates (TN, TP, and Sediment)

BMP	How Credited	TN Efficiency	TP Efficiency	Sedimen t Efficienc y	Max Potential TN Load Reduction (lbs/yr)	Max Potential TP Load Reduction (lbs/yr)	Max Potential Sediment Load Reduction (lbs/yr)		nits illable	Project ed Partici pation (%)	Project ed TN Load Reducti on (lbs/yr)	Projecte d TP Load Reductio n (lbs/yr)	Projected Sediment Load Reduction (lbs/yr)
Existing Stream Restoration	Lbs per Ln Ft	0.2	0.068	54.25	100	34	27,125	500	ft	100	100	34	27,125
Existing SCMs	Efficiency	varies	varies	varies	6,352	608	377,219	2,007	acres	100	6,352	608	377,219
SCM Conversion	Efficiency	varies	varies	varies	829	128	24,697	413	acres	100	829	128	24,697
New SCMs (NSA, ISI, PAA, HSI)	Efficiency	varies	varies	varies	237	43	20,038	43	acres	50	118.7	21.32	10,019
Impervious Cover Removal (ISI)	LU Conversion	N/A	N/A	N/A	0	0	0	0	acres	50	0	0	0
Reforest Stream Buffer	LU Conversion + Efficiency	25%	50%	50%	4,589	305	77,939	419	acres	65	2,983	198	50,660
Pervious Area Reforestation	LU Conversion	N/A	N/A	N/A	389	15	4,594	50	acres	50	195	7.61	2,297
New Stream Restoration	lbs per Ln Ft	0.2	0.068	54.25	1,028	350	278,845	5,140	ft	75	771	262	209,134
Downspout Disconnection (NSA)	Efficiency	50%	60%	90%	519	62	35,862	47	acres	33	171	21	11,834
Tree Plantings (NSA)	LU Conversion	N/A	N/A	N/A	404	16	4,765	52	acres	33	133	5	1,572
Tree Plantings (ISI)	LU Conversion	N/A	N/A	N/A	396	15	4,668	51	acres	66	261	10.21	3,081
Urban Nutrient Management	Efficiency	varies	varies	N/A	2,511	40	N/A	1,650	acres	50	1,256	20	N/A
Total					17,355	1,616	855,752				13,170	1,315	717,639
Total Existing Urban Load (lbs/yr)					80,056	4,568	1,603,670				80,056	4,568	1,603,670
Reduction Achieved					21.7%	35.4%	53.4%				16.5 %	28.8 %	44.7%

VERSAR Updated 6/5/14

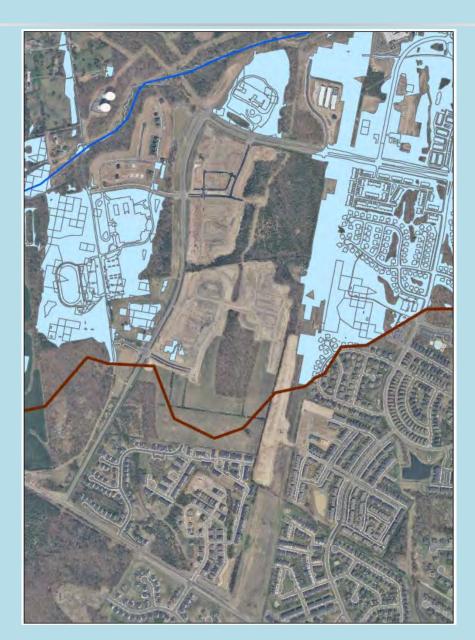
Reductions from Proposed Restoration Strategies

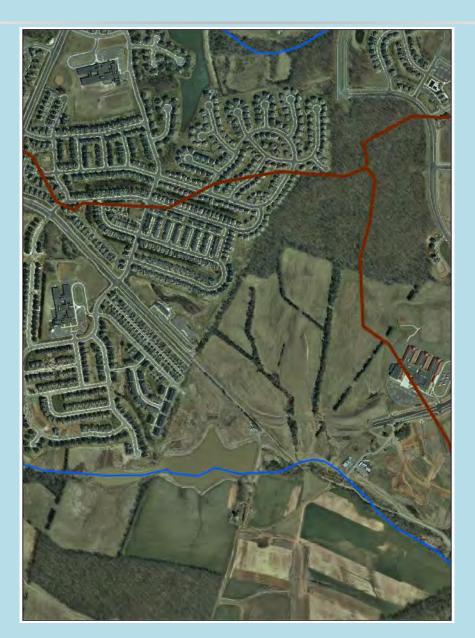


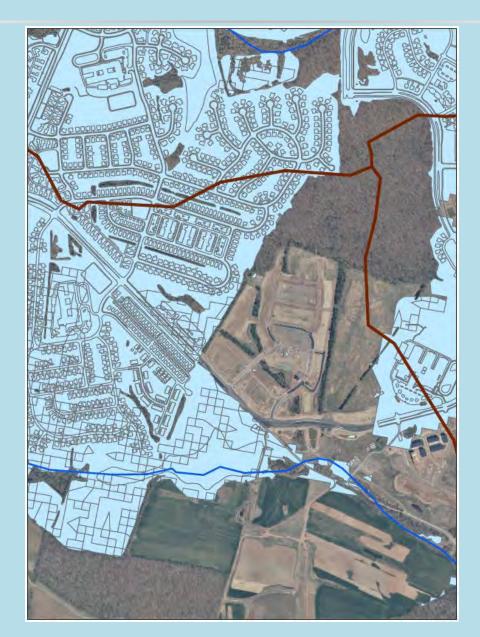


Updated 6/5/14

- Use existing GIS data to quantify land use coverage for built areas
- Apply proportions to areas zoned for future development
- Estimate proportions of land use types for classifications not represented at present
- Examine population v. impervious surface data for 2025, 2040
- Estimate land use and impervious cover for 2025 and 2040







Planning for community outreach meeting

- Week of June 23, location
- Present the watershed plan
- Encourage "what you can do" actions
- Displays
- Publicizing the meeting

Other Work in Progress

- Draft watershed plan
- Presentation to WRTAC June 23

Beyond the Watershed Plan

• Watershed plan implementation

Thanks again for your participation!

www.loudoun.gov/upperbroadrunwatershed

